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UccneaoBaHo ABHXKCHHUC W W3AYYEHHUE PEIsiTHBUCTCKON 3apsKEHHON HacTHLBI B MATHMTHOM noje B
MPUGAMNKEHUM MATOro YIJ1a OTKJIOHEHMsI BEKTOpa CKOPOCTH OT OCH TPAECKTOPUM (NPHOCEBOM
NPUGIMKEHUN). MONYHEHHbIE BLIPAXKEHUS Ul CMEKTPAIbHO-YTJIOBOrO pacrpeesieHus U3ny4eHHUsl
He cofepXaT CKOPOCTH WM YCKOPEHHs 3apsKCHHOW HaCTMLIbI, @ OMpefeIcHbl Yepe3 BEKTOPHbIid
MOTEHLNAA MArHUTHOrO MOJsl Ha MPSIMOI, B OKPECTHOCTH KOTOpoil ABWxeTcst uacTua. lNokasaHo,
YTO CMEKTPAAbHO-YIJIOBOE, VIJOBOE W  CMEKTPAIbHOE PACMPEeac/cHUsl W3JIYHCHUSL  COAepxKaT
JHEPrUI0 TOAbKO B BHIC OOWEro MHOXMTEDS, MOPOMU3BEACHHUSI SHEPrHM  HA  YIOol  MCXIAY
HAMpaBAEHUEM M3NVYEHMsI W OChbIO TPACKTOPMM M OTHOLUCHMS YacTOThl M3AYUCHWA K KBAApaTy
SHEpPruM, OoTKyaa cieayeT, 4to ¢opMa CNeKTPAIbHO-YIIOBOrO PAacrpefcieHus HM3ay4eHHs He
3aBUCHT OT 3Hepruu uactuubl. C  M3MEHEHUEM SHEPIrHM  W3MCHSICTCS JIMWbL  MACIITAb B
pacnpefencHUM MO YacTOTE W YIIY MEXY BEKTOPOM HAMPABACHUS WIIVUCHHSI H OCLIO TPACKTOPHH.

1. Introduction

Relativistic electron motion in different undulator magnetic field configurations have been studied
by a large number of authors. The simplest model of periodic magnetic field is a one-dimensional field
uniform in both transversal directions |1-7]. Such a model field is a good approximation for electrons
travelling near the median plane. In the helical undulator it is necessary to take into account at- least
two components of the magnetic field. But in that case the field has been still approximated by the
transversal components on undulator axis without al ongitudinal component [8-10]. The off-axis field
may be found as a solution of the Maxwell ‘s equations in vacuo by using the field on the axis or in the
median plane as a boundary condition. Such a method for a plane undulator has been realised in refs.
|11.12]. The longitudinal component may be neglected to a first approximation. But the next order
shows that the longitudinal component cause a slow betatron oscillations orthogonal to the orbit plane

[11-15], with a space period of order k! yA [11,12], where k and A are the undulator parameter and
period respectively, y is the electron energy in the units of the rest mass. One can neglect the

longitudinal field and the betatron motion if its oscillations period is large enough with respect to
undulator length. l.e.

ky "N <<'1 (1)

with the number of undulator periods N.

The exact solution of equation of motion in a two - dimensional transversal magnetic field of
arbitrary configuration is derived in [10]. The plane charge trajectory in a one - dimensional magnetic
field is found in refs.]11,12] as a particular case in absence of longitudinal field component.

In this paper we analyse the solutions of equation of motion in the paraxial approximation in a
magnetic field of arbitrary configuration. These solutions are substituted in the radiation formula, so
that the spectral-angular distribution of radiation becomes a function of the magnetic potential on
the trajectory axis. Two types of magnetic field are considered , namely , a field oscillating along the
direction of initial velocity and a monotonously varying one. The conditions that must be hold for
employment of method are pointed out. In particular, the undulator parameter k may be large enough

(k <<y).
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2. Paraxial trajectories in magnetic field

Let a relativistic charged particle cross a magnetic field which extends over a finite area. Refer the
direction of initial velocity v, to the x-axis. Denote by L the characteristic size of area occupied by

the magnetic field along the x-axis, Hy, the maximum value of the magnetic field on that axis. h(F) a

dimensionless function that defines the geometry of field according to H(F) = H , h(F).
Let us solve the equation of motion

oo eH it I
Fim o [[;‘h(r)] (2)
my
by use of the perturbation method |16] . As a small perturbation parameter we take
. eLH
o=—-~™=a0 (3)
mcyv, '

o meaning the final deviation angle of velocity vector if the magnetic field is uniform within the
distance L. In the spirit of the perturbation theory we present a particle radius-vector as an expansion

F(t) = Fy(t) + S R (t) + 82 A (t)+. . (4)

Let yp and zp be the particle coordinates at f — —oo . The line Y =Y4,Z =3y we call the
trajectory axis. The magnetic field can be expanded in the neighbourhood of trajectory axis as follows

h(F) = hy + (.9 iy )
= 3 A

with (. V ) =(y — yy) : +(z - Z9) —— - Subscript 0 denotes the field and its derivative on the
cy Az

trajectory axis. Since the right part of equation (2) is proportional to & . we keep in expansion (5) only
the first term of transverse coordinates.
Substituting (4) and (5) into the equation of motion (2) and equating coefficients of like powers in

O on both sides of resulting equation we find the equations for 7; (7). The equation without & gives
Fy = 0 and therefore f, = {vﬂr, Yos 30}-

Equating the coefficients of & we get

2 2
% o 1% 1%
X, =0, =0 p Z=-Uph
! 34 I hy, I 7 o
After first integrating we find the velocity up to first order
;(f) ] V()[l,—()‘ay(l)()f),_é‘a: (V()f)] s (6)
where the functions
l X l X
a,(x) = T Iho;(X, Yo, Zo)dx, a (x) =~ 7 _[h(l_v(x= Yo, 2o )dx (7

are dimensionless components of the vector potential on the undulator axis. Use is made of the
. s W2 3 =2 2 § . -

relation (v(, + ()x,) + bzylz +dﬁ‘"z|2 = Vg, which gives in first order X, = 0. Let us define the

longitudinal coordinate up to second order keeping in the transversal components only the first order.

. \2 3. 23 .
The term of order (52 in v, can be found from equation (v(, + (52)(2) + 02y12 + c)zzf‘ = vé :

v (t) = v({] - %52(12(1)0:) X (8)

with az(x) = a_ﬁ(x) + ag(x).
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A direct integration of the second-order equation following from (2) gives the same result.
Finally, after the next integrating of (6) and (8) we get the trajectory

vl

x(t) = vot - % 52 _J;az(x)dx .

vyt

y(r) =yy—0 Iay(x)dx, 9)

vyl

Z(t)=2 -6 Iaz(x)(bc.

Solutions (9) are the generalisation of well known expressions for the trajectory of a charged particle in
the plane sinusoidal or helical wigglers [17,18].
Now let us find out the conditions of smallness of the second order terms. The second term in (8)

is much smaller as the first one when & a(x)<<lv If the magnetic field does not oscillate, i.e. the

characteristic length of field variation is comparable with L, then the functions a,-(x) in (7) have an
order about unity and therefore the expansion (8) is valid if
S << 1. (10)

The oscillating field will be considered below.
To estimate the next terms in y and z coordinates we take the second-order equations of motion
following from (2)

; Y 1 .=
Y= _L)_ {_ E V{)(rlvi )hOz + lglzhﬂx}v
(11)
. VO I e
L) = _Z {g V(](rivi )h()y - ﬁlyhOx}'
Let us require 5\i_‘zl\ << |A.|. or
iV(}(Fie’i)EOJL - OV By, | << "’(}lEOJL‘~ (12)
where ;I.l = {0, hy, hz} .
This condition will be satisfied if
(79 o | << o (13)
|6V Aoy | << Vo];‘.m‘- (14)

The relation (14) is hold when & << | because it follows from (6) that F/u\ ~ vn‘ﬁoll. and Ay, has

an order of unity. As to inequality (13) it means that the magnetic field is uniform enough within a
deflection of the particle. Satisfying of this conditions allows to express solutions (9) in terms of vector
potential on the trajectory axis.

3. Motion in an oscillatory magnetic field

The condition & << | restricts the product of field strength and the length of trajectory-in that
field. By a fixed field strength it limits the length L. In the oscillatory field a deviation angle of velocity
can be small on a much longer path than in a monotonous field. In particular, if the usual for the
undulators requirement
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J.HL(x,y{,,z(})dx=O (15)

is satisfied, then under certain conditions the velocity deviation angle can be small for an arbitrary long
path. It is therefore interesting to specify the conditions (10) and (12) for an oscillatory field.
Let the magnetic field vary quasiperiodically along the x -axis with a period A and the transversal

component of field satisfying (15). Then the functions @;(x) in (7) have a value of order hy A/ L

and a*(x)~ -’5— ‘{};{)Lr :

Requirement of smallness of the second term in (8) gives

ﬁ<<ln::r(n§:‘<<l (16)
5
where
g — 4. O = e_}{_ﬁ (17)
L mcvyy

The right-hand side of equations (11) under certain relations between oscillation phases of Zi‘l and

h, or F, and the gradient of Ay, can contain a constant components which cause a slow side bend
of particle or betatron oscillations. To neglect such effects one can demand the second-order terms in

transversal velocity to be small with respect to the first-order ones: & - |\72i[ << ’i}‘lllA Substituting (6)
in (11) we get after integration

\‘l,.r vyl

Hv(,(i‘l§J_)i;L B 6ﬁlihol\.]dx << Vg - J‘/_zldx : (18)
For an oscillatory field satis-s-f;ing (15) one can estimate h
-]li dx|~ 2.
Then (18) can be rewritten in a form h
%' T[(Fl@l)-/i —5-%-/10_\,:fdx =4 (19)

Relations (16) and (19) are the sufficient conditions of a validity of the trajectory egs. (9) for an
oscillatory field.
In particular, let us consider a plane undulator with, for example, hv =0. In that case

vi. =2, =0, egs. (I1) are reduced to

Ny, . v,
3

2
. V
yy = i(y - ) 5 &= Yl (20)
and (19) is fulfilled if
L g, oL
—(y — <<, —vy A, <<1.
y(y y()) (?_,V ZVU 1y™0x
. SA” Vol
Taking into account that (y = y(,)-T and v|y~—L~ we get
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5
(h{): =
ay

The latter unequations limit the length of plane undulator.

Egs. (20) are the well known expressions for a defocusing force in the trajectory plane and a
betatron oscillations in the xz-plane [11]. The first of conditions (21) ensures that the deviation of the
particle from the trajectory axis under the defocusing force caused by the field nonuniformity is small

6 L <1, &= hy <<1. (21)

&

enough. The second condition coincides with (1) since &~k -;l/_l, hy,~1 (it should be Ay, ~hy, to
satisfy Maxwell s equations [11,12]). It demands the undulator length to be much less than the

betatron motion period.
4. Radiation
The solutions (9) of the equation of motion gives a possibility to express a spectral and angular

distribution of charge radiation in terms of the on-axis magnetic field h(x, Yo Zy). For this sake we
substitute the coordinates (9) and velocity (6) with the second order (8) in Fourier expansion of the
radiation field [19]

f(mf—-k":]dt., j =0, 7. (22)

_iew . [(5 .7).
Ej(w)="122. [(;-p)-e
The subscript j denotes a polarisation components, K = @ -1 / ¢ is a wave vector, A is an unit

vector of the radiation direction. The unit vectors of polarisation we take as usually (€. to be an unit
vector along the Z -axis)

It is convenient to transform the independent variable 7 to the axial one x. Performing this
transformation and expanding the o - and 7 - projections of £ for small ¢ we get up to first order

g, = (503) - \[l[—;{i? ; -[n}. + (Sn_\.ay(x)],

(23)
.[n_‘.nz - sn.n.a,(x)+ (1 - n’ )az(x)].

Be= (é-:rB) = ""\/'1)—6_7%?

In the exponent in (22) we keep the second-order term in v :

0

()= et = (iF) = 1 x(U= o) + 5 f[g @0+ fy(RACO) x . (2

where d(x) = {0, a,(x), az(x)} :

The term of order &2 is retained for next reason: if the particle has an ultrarelativistic energy,

thenn, ~n, —~;V_| and 1 - Byn, -}/"2. Thus all the terms in (24) are of equal order with respect to

o and }/_I,

The spectra-angular distribution of radiated energy is proportional to square the module of E(a))
2
de ; e’w?

L - A [8.(x)- e eaxd 25)
dQdo  4r’cvi !ﬂj( ‘ (

The last formula can be reduced by some additional assumptions about the particle energy.
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Let us consider two ranges of energy.
1. The particle energy is of order or less than its rest energy, i.e. ¥ <~1. Then the deviation angle &

in the paraxial approximation is far less than the radiation cone y 1 The radiation has in that case a
dipole nature and one may use the formula [19]

E(w) = W [f{(ﬁ - B)Zi(w*)ﬂ. where @' = @ - (1 = fByi)

A separation of E(@) into components of polarisation and substitution ﬂ(a)) from equation of
motion yields the following formulae for spectra-angular distribution

de, €'\ Bony[n H (1) = n,H_ ()] +n(l- Bon ) H ()

dode 47 miy (1 - n2)1 - Bony)’ ’
(26)
de . 94[":["}’ H:(';f) -nH ('FH +(1- ﬁonl\_)Hy(Jf)]z
dada 4 miy 2 (1- n2)(1 - pony)’ ’
2
e, i B !l (1= pon ) H2(r) = (1= B H (), — H (). ]
= = , (27)
dQdew < dQdw 47°m*y2c(1 - n2)(1 - Bon, )

where

H{ )= _[[-?(x, Yo 320) - € dx ., = vﬂo(l — Bon,).

It is obvious that expressions (26) and (27) are valid for an ultra-relativistic motion too if the main
condition & << 7 ' is satisfied.

2. The particle energy is large compared with the rest one (¥ >>1). Let us introduce a spherical
coordinates ¢ and ¢ as follows # = {COS 4, sing cos ¢, sin g sin (0}‘ For y >> 1 the angle
9 is of magnitude }/_l. Hence we may expand (25) with (23) and (24) for small y"] and 9. Then,
to the first order, we get B, = -3-cos¢p -6 -a,(x), B, =9 -sinp+5-a_.(x).

All items in function f(x) turn out to be small quantities of second order

f(x) = ]‘{ p+5 a x)] }dx (28)

with p= {0,y cosp,ysing}, w=9 y.
Substituting from these approximations in equation (25) we get

de

oI

dea)_ 2 2 3

2

(29)

gj p +6-a( x)] e ()¢ g

5. Conclusions

The equation (25) with (23) and (24) express the spectra-angular distribution of radiated energy in
terms of a(x). reduced potential of magnetic field on the trajectory axis. The validity conditions of

paraxial approximation are given by (10) and (13) for non-oscillatory field and by (16) and (19) for
oscillatory one. These conditions mean that the deviation of velocity vector from its initial direction is
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small and the magnetic field in the vicinity of the trajectory is homogeneous enough. In case of
oscillating field the dimensions of the region in which the magnetic field is non-zero are to be far less
then the betatron oscillations period. The general expression for the radiation distribution allows a

simplification in a wide range of energy value, namely y <~I and y >> 1.

As is well known, the radiation pattern depends essentially on the value of k, undulator parameter.
It differs from  product y-g by a factor about of unity. The main condition of paraxial
approximation demands k << y. Hence in the case of ultrarelativistic motion the formula (29) is

applicable for any k practically used in undulators.
Notice that the ultrarelativistic formula (29) includes the particle energy only as a scale factor in

product ¥ =y - & and y_za) in the exponent. Therefore the shape of the spectra and angular
distribution in considered approximation does not depend on the particle energy. The energy variation
changes only the scale of the frequency, the angle ¢ and the magnitude of the energy emitted. This

was pointed out in early papers dealt with an ultrarelativistic undulator radiation [4,5]. Here we
establish it for the radiation in an arbitrary magnetic field satisfying the considered conditions.
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Paraxial approximation for the charge radiation in a magnetic field

V.Ya.Epp, G.F.Kopytov and I.N.Zhukova

A paraxial method for calculation of the relativistic charge radiation in a magnetic field is presented.
The method is based on expanding of motion and radiation formulae for the small angle between the
velocity vector and the trajectory axis. Some other conditions that allow to apply the method are
determined. The obtained expressions for the spectral and angular distribution of radiation does not
contain the velocity or acceleration of charge: they are expressed through the vector potential on a
trajectory axis. It is shown that the radiation formulae for ultrarelativistic charge include the charge
energy only as scale factors by the frequency, the angle between the trajectory axis and direction of
radiation and by the radiation intensity. Hence the shape of angular and spectral distribution does not
depend on the electron energy.
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